
Towards more efficient
query plans

PostgreSQL 11 and beyond

Alexander Kuzmenkov
a.kuzmenkov@postgrespro.ru

What's a plan?
● SQL is a declarative language:

“what”, not “how”
● Optimizer decides how to execute

queries based on statistics about
data and available resources

● A plan is a tree of simple building
blocks
○ Scan

■ Table
■ Index
■ Function
■ Subquery

○ Join
■ Merge
■ Nested Loop
■ Hash

○ Sort/Group/Unique
○ etc.

Index scan

Covering indexes 11

Index-only scan can return INCLUDEd columns, but these columns:
● do not participate in UNIQUE constraint
● do not require btree operators (e.g. point type)

table t(a int = 1..1kk, b int in [0, 100), c text(60));
create unique index idx_t on t(a) include (b);
select a, b from t where a > 100000 (1/10 of the rows);

Index Plan Time, ms

unique on t(a) Index Scan 30

unique on t(a), plain on t(a, b) Index Only Scan 20

unique on t(a) include (b) Index Only Scan 20

Index-only Bitmap Scan for count(*)

● for indexes that do not support index-only scan (e.g. GIN)
● don't fetch the tuples when we only need to count them
● fast and precise pagination, no need for the EXPLAIN trick
● needs adequate work_mem to fit the bitmap
● works only on vacuumed pages

 # create index pglist_gin on pglist(fts) using gin;
 # select count(*) from pglist
 where body_tsvector @@ to_tsquery('rebase');

Conditions Buffers: shared hit Time, ms

not vacuumed 95k 160

vacuumed 50 90

11

Bitmap

Tuple ID ?

Page 1
Tuple 1

1

Page 1
Tuple 2

0

....

Page N
Tuple M

1

....

● Fast DISTINCT using a btree index
● Now done with Unique over sorted input

create table t(a int), 100k ints [0, 500);
create index idx_t_a on t(a);
select distinct a from t;

Plan Time, ms

Loose index scan 6

Unique over Index scan 97

Unique over Sort 160

DEVLoose index scan

Incremental sort
Who needs sorted output?
● ORDER BY
● DISTINCT
● GROUP BY
● window functions
● merge joins

● Sort partially sorted input
● Reuse one index for similar ORDER BY

queries or joins
● Read less rows with LIMIT

table t(a int, b int); 100k random ints in [1, 1000]
 -- groups of 100 rows with same 'a'
index on t(a);
select * from t order by a, b limit 1001;

Plan Rows read Time, ms

Incremental Sort over Index Scan 1101 (11 groups of 100 + 1) 3.2

Sort (top-N heapsort) over Seq Scan 100k 6.5

DEV

Estimate sort costs for GROUP BY

● Make sort cost accord for cardinality and order of
columns

● Choose cheapest sort order for GROUP BY
● Example

○ “p” — high cardinality, cheap to compare
○ “v” — low cardinality, expensive to compare

Sort keys Sort time,
ms

p, v 800

v, p 1500

DEV

select i/2 as p, format('%60s', i%2) as v into btg from
generate_series(1, 1000000) i;
select count(*) from btg group by p, v;

Joins
Join types
● Inner
● Outer
● Semi/Anti

Optimizations
● Transitive equality
● Join strength reduction
● Join removal

How to choose the order of joins?
● System R

○ Finds the best join for 2 tables
○ Combines the best joins it found for N-1

tables to find the best ones for N
○ Too many combinations to try. Only used

when N < geqo_threshold

● Genetic algorithm
○ Used when N >= geqo_threshold
○ A heuristic algorithm that doesn't try all the

permutation

Multicolumn join selectivity

● Poor selectivity estimates for multicolumn join on correlated columns
● CREATE STATISTICS not helpful for joins
● Solution: create single–column statistics on composite values
● Do it automatically — there is probably and index on these columns

 # create table t (a, b in [0, 10k)), 1M rows;
 # select * from t t1, t t2 where t1.a = t2.a and t1.b = t2.b;

Real number of join
rows

Normal stats Multicolumn index
stats

10M 100 (4 orders off!) 9.97M

DEV

Joins with a unique inner side

Semi join
● WHERE EXISTS
● Like Inner, but:

○ Doesn't output inner columns
○ Doesn't output duplicates

● Can be reduced to inner join when
the inner side is unique [10]

Skip materialization in merge joins
● Each inner tuple only used once =>

don't have to materialize the inner
side [10]

● On the inner side, at most one row matches the join clauses
● Proved by unique index for table or GROUP BY for subquery

Self join on primary key

● Frequent in ORM-generated queries
● Also happens when reusing complex views
● Can be replaced with a scan with combined filters

create table t(id int primary key, x text);
select * from t t1 join t t2 where t1.id = t2.id and t1.x like 'a%';
or
create view v as select * from t where x like 'a%';
select * from t where exists (select * from v where id = t.id);

Baseline Join over scans on t and v

Optimized Scan on t where x like 'a%'

DEV

Outer join
● Output all outer rows, nulls for

inner rows when none match

● Less freedom for planning

● Can be reduced to inner join
○ when it follows from WHERE clause that

some inner column is not null [before 10]
● Can be removed

○ Inner side is not used and is unique
[before 10]

○ Inner side is not used and the result is
made unique by GROUP BY or DISTINCT
[DEV]

create table t1 (id int primary key);

create table t2 (id int primary key, b int not null);

select t1.* from t1 left join t2 on t1.id = t2.id;

select distinct t1.* from t1 left join t2 on t1.id = t2.b;

select t1.id from t1 left join t2 on t1.id = t2.b group by t1.id;

● Can do full joins
● Faster than Nested Loop

 # create table t(a) as select generate_series(1, 10000);

 # select * from t t1 full join t t2 on t1.a < t2.a;
 ERROR: FULL JOIN is only supported with merge─joinable
 or hash─joinable join conditions

 # select * from t t1 join t t2 on t1.a < t2.a and t2.a < 1000;

DEVMerge join on inequality

Plan Time, ms

Merge Join over Sort 100

Nested Loop 880

● Normally performed with Nested Loop
● Order ranges by comparison operator
● Perform Merge Join on range overlap (&&)

 # tables s, r(ir int4range) with
 r.ir = (g, g+10),
 s.ir = (g+5, g+15),
 g = 1..100k;

 # gist(ir) on s and r;

 # select * from s join r on s.ir && r.ir;

DEV

Plan Time, s

Nested Loop over Seq
Scan and Index Only
Scan

15.7

Merge Join over Sort 4.3

Merge Join over btree
Index Scan

2.8

Merge join on range overlap

Transform join to union

● Useful for aggregation over
star schema joins

create temp view denorm as
 select f.*, d1.t t1, d2.t t2
 from fact f
 left join dim d1 on f1=d1.id
 left join dim d2 on f2=d2.id;

select count(*) from denorm
 where '1' in (t1,t2);

 Aggregate
 -> Hash Join on (f.f2 = d2.s)
 -> Hash Join on (f.f1 = d1.s)
 Execution time: 5.8 ms

select count(*) from
(select * from denorm where '1'=t1
 union
 select * from denorm where '1'=t2);

 Aggregate
 -> Hash Aggregate
 -> Append
 -> Nested Loop on (f.f2 = d2.s)
 -> Nested Loop on (f.f1 = d1.s)
 Execution time: 0.6 ms

DEV

Precalculate stable and immutable functions
1. Cache stable functions in expressions at execution time

select count(*) from messages where body_tsvector @@
to_tsquery('postgres');

● Calculate to_tsquery only once in Recheck step of Bitmap Heap Scan
● 1.5 s precalculated / 2.3 s baseline

2. Inline immutable functions in FROM list at planning time

select count(*) from messages m, to_tsquery('english',
'postgres') qq
where m.body_tsvector @@ qq;

● Bitmap Heap scan instead of Nested Loop over Function Scan + Bitmap
Heap scan

● No join => faster planning, better cost estimates

DEV

Support the development
● Review the patches you need

● No need to know Postgres internals or

C programming

● Read “Reviewing a Patch” at the wiki

● Usability review

○ Is the feature actually implemented?

○ Do we want it?

○ Are there dangers?

● Feature test

○ Does it work as advertised?

○ Are there any corner cases?

● Performance review

○ Are there any slowdowns?

○ If the patch claims to improve

the performance, does it?

Thank you!

Alexander Kuzmenkov
a.kuzmenkov@postgrespro.ru

References
Loose index scan
https://www.postgresql.org/message-id/flat/707
b6f68-16fa-7aa7-96e5-eeb4865e6a30%40red
hat.com

Incremental sort
https://commitfest.postgresql.org/20/1124/

Estimate sort costs for GROUP BY
https://commitfest.postgresql.org/20/1706

Multicolumn join selectivity
https://www.postgresql.org/message-id/flat/3fcf
d5e5-6849-34e6-22ab-1b62d191bedb%402nd
quadrant.com#d61504c511d4b437505a05fa5
0047019

Self join on primary key
https://commitfest.postgresql.org/20/1712/

Unique outer join with GROUP BY
https://www.postgresql.org/message-id/flat/CAK
JS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_u
B-V=U4+YRw@mail.gmail.com

Merge join on inequality
https://commitfest.postgresql.org/19/1141/

Merge join on range overlap
https://commitfest.postgresql.org/17/1449/

Transform join to union
https://www.postgresql.org/message-id/flat/7f70b
d5a-5d16-e05c-f0b4-2fdfc8873489@BlueTreble.
com

Precalculate stable and immutable functions
1. https://commitfest.postgresql.org/20/1648/
2. https://commitfest.postgresql.org/19/1664/

https://www.postgresql.org/message-id/flat/707b6f68-16fa-7aa7-96e5-eeb4865e6a30%40redhat.com
https://www.postgresql.org/message-id/flat/707b6f68-16fa-7aa7-96e5-eeb4865e6a30%40redhat.com
https://www.postgresql.org/message-id/flat/707b6f68-16fa-7aa7-96e5-eeb4865e6a30%40redhat.com
https://commitfest.postgresql.org/20/1124/
https://commitfest.postgresql.org/20/1706
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://commitfest.postgresql.org/20/1712/
https://www.postgresql.org/message-id/flat/CAKJS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_uB-V=U4+YRw@mail.gmail.com
https://www.postgresql.org/message-id/flat/CAKJS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_uB-V=U4+YRw@mail.gmail.com
https://www.postgresql.org/message-id/flat/CAKJS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_uB-V=U4+YRw@mail.gmail.com
https://commitfest.postgresql.org/19/1141/
https://commitfest.postgresql.org/17/1449/
https://www.postgresql.org/message-id/flat/7f70bd5a-5d16-e05c-f0b4-2fdfc8873489@BlueTreble.com
https://www.postgresql.org/message-id/flat/7f70bd5a-5d16-e05c-f0b4-2fdfc8873489@BlueTreble.com
https://www.postgresql.org/message-id/flat/7f70bd5a-5d16-e05c-f0b4-2fdfc8873489@BlueTreble.com
https://commitfest.postgresql.org/20/1648/
https://commitfest.postgresql.org/19/1664/

